

Fig. 1. PLUTO drawing of [(oep)TlMo(CO)₃Cp].

Kadish (1987), Brothers & Collman (1986) and references therein.

The crystal structures containing a hetero metalmetal bond in the metalloporphyrin series are: [(oep)-SnFe(CO)₄] (Barbe, Guilard, Lecomte & Gerardin, 1984), Sn=Fe = 2.491 (1) Å; [(tetraphenylporphinato)Sn{Mn(CO)₄HgMn(CO)₅}].0.5CH₂Cl₂ (Onaka *et al.*, 1985), Sn-Mn = 2.554 (3) Å; [(oep)InMn-(CO)₅] (Guilard, Mitaine, Moïse, Lecomte, Boukhris, Swistak, Tabard, Lacombe, Cornillon & Kadish, 1987), In-Mn = 2.705 (1) Å; [(oep)RhIn(oep)] (Jones, Carrol & Wayland, 1986), Rh-In = 2.584 (2) Å; [(oep)-TlMn(CO)₅] (Guilard *et al.*, 1988), Tl-Mn = 2.6994 (9) Å; [(oep)InMo(CO)₃Cp] (Lecomte, Habbou, Mitaine, Richard & Guilard, 1989), In-Mo = 2.890 (1) Å.

References

- BARBE, J. M., GUILARD, R., LECOMTE, C. & GERARDIN, R. (1984). Polyhedron, 3, 889–892.
- BROTHERS, P. J. & COLLMAN, J. P. (1986). Acc. Chem. Res. 19, 209-215.
- GUILARD, R., LECOMTE, C. & KADISH, K. M. (1987). Structure and Bonding, Vol. 64, edited by J. W. BUCHLER, pp. 205–268. Berlin: Springer-Verlag.
- GUILARD, R., MITAINE, P., MOÏSE, C., LECOMTE, C., BOUKHRIS, A., SWISTAK, C., TABARD, A., LACOMBE, D., CORNILLON, J. L. & KADISH, K. M. (1987). *Inorg. Chem.* **26**, 2467–2476.
- GUILARD, R., ZRINEH, A., FERHAT, M., TABARD, A., MITAINE, P., SWISTAK, C., RICHARD, P., LECOMTE, C. & KADISH, K. M. (1988). Inorg. Chem. 27, 695-705.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99–101. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JONES, N. L., CARROL, P. J. & WAYLAND, B. B. (1986). Organometallics, 5, 33-37.
- LECOMTE, C., HABBOU, A., MITAINE, P., RICHARD, P. & GUILARD, R. (1989). Acta Cryst. C45, 1226–1228.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- ONAKA, S., KONDO, Y., YAMASHITA, M., TATEMATSU, Y., KATO, Y., GOTO, M. & ITO, T. (1985). *Inorg. Chem.* 24, 1070–1078.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1989). C45, 1226-1228

Structure of Tricarbonyl(η-cyclopentadienyl)[(2,3,7,8,12,13,17,18octaethylporphinato)indio(III)]molybdenum(0) at 100 (5) K

BY C. LECOMTE* AND A. HABBOU

Laboratoire de Minéralogie–Cristallographie, UA CNRS 809, Université de Nancy I, BP 239, 54506 Vandoeuvre les Nancy CEDEX, France

AND P. MITAINE, P. RICHARD AND R. GUILARD

Laboratoire de Synthèse et d'Electrosynthèse Organométallique, UA CNRS 33, Faculté des Sciences Gabriel, Université de Bourgogne, 21100 Dijon, France

(Received 5 January 1989; accepted 6 February 1989)

Abstract. [InMo(C₃H₃)(C₃₆H₄₄N₄)(CO)₃], [(oep)-InMo(CO)₃Cp], $M_r = 892.67$, triclinic, $P\overline{1}$, a = 12.679 (5), b = 13.895 (5), c = 15.239 (8) Å, a = 58.81 (4), $\beta = 59.46$ (4), $\gamma = 67.85$ (4)°, V = 1954.5 Å³, Z = 2, $D_x = 1.516$ g cm⁻³, λ (Mo Ka⁻) = 0.71073 Å, $\mu = 0.17$ cm⁻¹, F(000) = 912, T = 100 K,

* Author to whom correspondence should be addressed.

0108-2701/89/081226-03\$03.00

© 1989 International Union of Crystallography

Table	1.	P	ositior	ıal	parameters	5 (X	10 ⁴ ; ×	105	for		
In,Mo)	an	d	equiv	aleni	t isotropic	temp	erature	fac	ctors		
and their e.s.d.'s for the non-H atoms											

ln

Mo N(1)

N(4)

N(3)

N(2) C(1)

C(2)

C(3) C(4) C(5)

C(6)

C(7)

C(8)

C(9) C(10)

C(11)

C(12)

C(13)

C(14) C(15) C(16) C(17)

C(25) C(26) C(27) C(28)

C(31) C(32) C(33)

Table 2. Bond distances (Å) and bond angles (°)

(III,IVIO)	and their	as d's for th	e non-H ator	ne juciois	$\ln -N(1)$	2.206 (2)	C(41)–O(1)	1.158 (4)	
	unu men	e.s.u. sjor ma	e non-11 ator	115	$\ln - N(2)$ $\ln - N(3)$	2.195 (2)	C(42)-O(2) C(43)-O(3)	1.146 (4)	
	x	у	Ζ	$B_{eq}^{*}(\dot{A}^{2})$	In-N(4)	2.196 (2)	C(50)-C(51)	1.413 (4)	
In	33854 (2)	32633 (2)	21614 (2)	0.68(1)	In-Mo Mo C(41)	2.890(1)	C(51) - C(52) C(52) - C(53)	1.409 (5)	
Mo	15852 (2)	19302 (2)	28916 (2)	0.85(1)	Mo-C(42)	1.962 (3)	C(52) -C(54)	1.414 (5)	
N(1) N(4)	3764 (2)	3162 (2)	3465 (2)	0.85 (11)	Mo-C(43)	1.981 (3)	C(54)-C(50)	1-405 (5)	
N(3)	2534 (2)	5009 (2)	2022 (2)	0.91 (11)	Mo-Cp*	2.018			
N(2)	4029 (2)	4110(2)	325 (2)	0.83 (11)	$M_0 = C(50)$ $M_0 = C(51)$	2.349 (3)			
C(1)	5 /89 (3)	718 (2)	2519(3)	0.96(12) 0.99(12)	Mo-C(52)	2.347 (3)			
C(2) C(3)	6851 (3)	1024 (2)	1042 (3)	0.99 (12)	Mo-C(53)	2.353 (3)			
C(4)	5910 (3)	2011 (2)	842 (3)	0-95 (12)	Mo-C(54)	2-356 (3)			
C(5)	5706 (3)	2624 (2)	-146 (3)	1.04 (13)	N(1) = C(1)	1.377 (4)	N(2) = C(6)	1.371 (4)	
C(0) C(7)	4830 (3)	4184 (2)	-1418(2)	0.90(12) 0.98(12)	N(1) - C(4)	1.372 (4)	N(2) - C(9)	1.369 (3)	
C(8)	3722 (3)	5087 (2)	-1318 (3)	1.07 (13)	C(1)-C(2)	1.450 (4)	C(6)-C(7)	1.446 (4)	
C(9)	3351 (3)	5034 (2)	-224 (2)	0.89(12)	C(2) - C(3)	1.368 (4)	C(7) - C(8)	1.371 (4)	
C(10) C(11)	2448 (3)	5809 (2)	1234 (3)	0.99(13)	C(3) = C(4) C(4) = C(5)	1.400 (4)	C(9) - C(10)	1.388 (4)	
C(12)	1131 (3)	6648 (2)	1633 (3)	1.13 (13)	C(5)-C(6)	1.392 (4)	C(10)-C(11)	1.392 (4)	
C(13)	1051 (3)	6352 (2)	2666 (3)	1.01 (12)	C(2)-C(25)	1.498 (4)	C(7)-C(29)	1.491 (4)	
C(14)	1929 (3)	5311 (2)	2917 (2)	0.86(12)	C(3) = C(27) C(25) = C(26)	1.492 (4)	C(8) = C(31) C(29) = C(30)	1.497 (4)	
C(15) C(16)	3033 (3)	3751 (2)	4126 (2)	0.89 (12)	C(27) - C(28)	1.537 (4)	C(31)-C(32)	1.522 (5)	
C(17)	3347 (3)	3254 (2)	5084 (2)	0.93 (12)	N(3)-C(11)	1.368 (4)	N(4)C(16)	1.370 (4)	
C(18)	4290 (3)	2372 (2)	4971 (3)	1.10(13)	N(3) - C(14) C(11) - C(12)	1.383 (4)	N(4) = C(19) C(16) = C(17)	1.373 (4)	
C(19)	4338 (3)	1531 (2)	3535 (3)	0.93(12) 0.94(12)	C(12) - C(12) C(12) - C(13)	1.362 (4)	C(17) - C(18)	1.366 (4)	
C(25)	7596 (3)	-211 (2)	2650 (3)	1.18 (13)	C(13)-C(14)	1.458 (4)	C(18)-C(19)	1.446 (4)	
C(26)	8708 (3)	210 (3)	2403 (4)	2.23 (17)	C(14) - C(15)	1.387 (4)	C(19) - C(20)	1.394 (4)	
C(27) C(28)	7648 (3)	431(3) -314(3)	277 (3)	2.15(17)	C(13) = C(10) C(12) = C(33)	1.499 (4)	C(17) - C(37)	1.495 (4)	
C(29)	5299 (3)	3813 (3)	-2354 (3)	1.37 (13)	C(13)-C(35)	1-496 (4)	C(18)-C(39)	1.508 (4)	
C(30)	4772 (4)	2845 (3)	-2127 (3)	2.05 (16)	C(33)-C(34)	1.533 (5)	C(37) - C(38)	1.524 (4)	
C(31)	3125 (3)	5939 (3)	-2122(3) -1814(3)	2.00(16)	C(33) = C(30)	1.522 (4)	C(39)-C(40)	1.332 (4)	
C(32)	374 (3)	7594 (3)	1004 (3)	1.39 (14)	N(1)–In–Mo	110-1 (1)	N(1)— ln — $N(2)$	82.2(1)	
C(34)	-557 (3)	7167 (3)	978 (3)	1.88 (16)	N(2)-In-Mo	105-2 (1)	N(2) - In - N(3)	82-5 (1)	
C(35)	272 (3)	6958 (3) 7637 (3)	3425 (3)	1.29 (13)	N(3)–In–Mo	111.8(1)	$N(3) - \ln - N(4)$	83.1(1)	
C(30) C(37)	2755 (3)	3673 (3)	5984 (3)	1.31 (13)	N(4)—In—Mo In—Mo— $C(41)$	70.3(1)	N(4) = In = N(1) $C(41) = M_0 = C(42)$	82.7(1) 80.3(1)	
C(38)	3277 (4)	4684 (3)	5669 (3)	2.17 (17)	In-Mo-C(42)	131.4 (4)	C(41)-Mo-C(43)	103.2(1)	
C(39)	5018 (3)	1622 (3)	5695 (3)	1.32 (13)	In-Mo-C(43)	72.1(1)	C(42)-Mo-C(43)	78-4 (1)	
C(40) C(41)	2305 (3)	1259 (2)	4009 (3)	1.29 (14)	$\ln - Mo - C(50)$ $\ln - Mo - C(51)$	141.5 (1)	$M_0 - C(41) - O(1)$ $M_0 - C(42) - O(2)$	173.5 (2)	
C(42)	95 (3)	1494 (3)	4265 (3)	1-51 (15)	$\ln - Mo - C(52)$	87.7(1)	Mo-C(43)-O(3)	172.5 (3)	
C(43)	682 (3)	3427 (3)	2942 (3)	1.36(14)	In-Mo-C(53)	83.9(1)	In-Mo-Cp*	111-1	
C(50)	1077 (3)	1963 (3)	1593 (3)	1.68 (16)	InMoC(54)	113-8 (1)			
C(52)	2248 (3)	2311 (3)	1013 (3)	1.73 (15)	C(1) = N(1) = C(4)	106.9 (2)	C(6) - N(2) - C(9)	106.7 (2)	
C(53)	3088 (3)	1376 (3)	1431 (3)	1.68 (15)	N(1)-C(4)-C(5)	125.0 (3)	N(2)-C(9)-C(10)	125.0 (3)	
C(54)	2426 (3)	437 (3)	4713(2)	2.02(11)	N(1)-C(4)-C(3)	109-9 (3)	N(2)-C(9)-C(8)	109.9 (2)	
O(2)	-793 (2)	1232 (2)	5054 (2)	2.16(11)	C(3) - C(4) - C(5) C(4) - C(3) - C(2)	125-1 (3)	C(8) - C(9) - C(10) C(9) - C(8) - C(7)	$125 \cdot 1(3)$ $106 \cdot 7(3)$	
O(3)	45 (2)	4250 (2)	3011 (2)	2.24 (12)	C(4) - C(3) - C(27)	124.8 (3)	C(9)-C(8)-C(31)	124.9 (3)	
					C(2)-C(3)-C(27)	128-4 (3)	C(7)-C(8)-C(31)	128.3 (3)	
* Aniso	otropically refin	ed atoms are giv	en in the form of	of the equivalent	C(3) = C(2) = C(1) C(3) = C(2) = C(25)	$107 \cdot 1(2)$ $127 \cdot 7(3)$	C(8) = C(7) = C(6) C(8) = C(7) = C(29)	106.5(3) 128.4(3)	
isotropic displacement parameter defined as: (A) $\left(\frac{1}{2}n(1,1) + \frac{1}{2}n(2,2) + \frac{1}{2}n$					C(1)-C(2)-C(25)	125-1 (3)	C(6)-C(7)-C(29)	125.1 (3)	
$\frac{1}{(3)} \left[a^2 B(1,1) + b^2 B(2,2) + c^2 B(3,3) + ab(\cos \gamma) B(1,2) + ac(\cos \beta) B(1,3) + b(\cos \beta) B(2,2) \right]$					C(2)-C(1)-N(1)	109-4 (3)	C(7)-C(6)-N(2)	110.3 (2)	
DU(COSUJL	(2,3)].				C(2)-C(1)-C(20)	126.0 (3)	C(7)-C(6)-C(5) N(2)-C(6)-C(5)	125+4 (3)	
					C(4) - C(5) - C(6)	127.4 (3)	C(9)-C(10)-C(11)	127.6 (3)	
					C(3)-C(27)-C(28)	111.8 (3)	C(7)-C(29)-C(30)	112.9 (3)	
R(F) = 0.0302, $wR(F) = 0.0249$, GOF = 1.258 for					C(2)-C(25)-C(26)	112.2 (2)	C(8) - C(31) - C(32) C(16) - N(4) - C(19)	112.8 (3)	
5087 reflections [(cen)InMc(CO) Cn] has two coordi					N(3)-C(14)-C(15)	124.4 (3)	N(4)-C(19)-C(20)	124.5 (3)	
3507 renections. [(0ep)mixio(CO) ₃ Cp] has two coolul-					N(3)-C(14)-C(13)	109-2 (2)	N(4)-C(19)-C(18)	109.6 (3)	
nated metal units, which are linked by a single covalent					C(13) = C(14) = C(15) C(14) = C(13) = C(12)	126.4(3)	C(18) - C(19) - C(20) C(19) - C(18) - C(17)	125.9(3) 107.1(3)	
bond; the In-Mo bond distance is $2.890(1)$ A. The					C(14)-C(13)-C(35)) 124.0 (3)	C(19)-C(18)-C(39)) 124.4 (3)	
average In-N distance is $2 \cdot 201 (2) \pm 0 \cdot 007$ Å and the					C(12)-C(13)-C(35) 129.1 (3)	C(17)C(18)-C(39) $128.3(3)$	
In atom lies 0.791 (1) Å above the four-N-atom plane					C(13) = C(12) = C(11) C(13) = C(12) = C(33)) 107+1 (2)) 129+4 (3)	C(18)-C(17)-C(16 C(18)-C(17)-C(37	106.5(3) 128.2(2)	
toward	is the Mo at	om. The aver	rage Mo-C	O distance is	C(11)-C(12)-C(33)) 123.4 (3)	C(16)-C(17)-C(37) 125.4 (3)	
towards the fit atom. The average fito- 0 distance is					C(12)-C(11)-N(3)	109.9 (3)	C(17)-C(16)-N(4)	109.9 (2)	
1.212		•			V(12) = C(11) = C(10) V(3) = C(11) = C(10)	123.5 (3)	N(4) = C(16) = C(15)	123.4(3) 124.7(3)	
					C(14)-C(15)-C(16) 127.9 (3)	C(19)–C(20)–C(1)	127.8 (3)	
Fyneri	mental. Cr	vstals were	prepared a	ccording to	C(13)-C(35)-C(36)) $113 \cdot 1(3)$	C(18)-C(39)-C(40) $112.3(3)$	
		Journe more	repuied a		U(12)-U(33)-U(34	, 112.0(3)	U(1)-U(3)-U(38	, 113-3 (3)	

Experimental. Crystals were prepared according to $C_{(12)}-C_{(33)}-C_{(34)}$ Guilard, Mitaine, Moïse, Lecomte, Boukhris, Swistak, Tabard, Lacombe, Cornillon & Kadish (1987). A black

* Cp: center of the cyclopentadienyl ring.

 $0.48 \times 0.32 \times 0.12$ mm, of [(oep)InMocrystal, (CO)₃Cp] recrystallized from toluene/heptane was mounted on a CAD-4 diffractometer equipped with a Nonius low-temperature device on which a glove box was built to prevent ice formation (Aubry & Lecomte, 1983). Unit-cell dimensions at 100 K were obtained from accurate angle values of 25 reflections with $12 < \theta < 24^{\circ}$ using monochromatized Mo Ka radiation. 7865 reflections were measured up to $(\sin\theta)/\lambda$ $= 0.60 \text{ Å}^{-1}$ at 100 K ($-15 \le h \le 15, -17 \le k \le 17$, $0 \le l \le 18$; $\overline{2}34$, 441, $3\overline{1}2$, $\overline{2}\overline{2}4$ standard reflections monitored every 2 h; ω -2 θ scan; scan width 1.4° + $0.35^{\circ} \tan\theta$; scan speed $v: 0.7 < v < 3.30^{\circ} \min^{-1}$. No decay was observed. 5987 reflections $[I \ge 3\sigma(I)]$, corrected for Lorentz and polarization effects, were used to solve the structure. The structure was solved by interpretation of the Patterson map; all non-H atoms were refined anisotropically; H-atom coordinates refined from the positions found in difference Fourier synthesis (SHELX76; Sheldrick, 1976). At convergence $[\Delta/\sigma_{max} = 0.53$ for x of C(28)], a residual Fourier map gave a maximum peak of $0.61 \text{ e} \text{ Å}^{-3}$. The weighting scheme used was $w^{-1} = \sigma^2(F) + 0.00018F^2$. Atomic scattering factors from SHELX76 and from International Tables for X-ray Crystallography (1974). Final residuals are R(F) = 0.0302; wR(F) = 0.0249; GOF = 1.26. Fractional coordinates and equivalent isotropic temperature factors of the non-H atoms are given in Table 1;* bond lengths and angles are listed in Table 2; Fig. 1 is the ORTEP (Johnson, 1965) drawing of the molecule.

Related literature. For a review of metal-metal bonding in metalloporphyrin chemistry, see Guilard, Lecomte & Kadish (1987), Brothers & Collman (1986) and references therein.

The crystal structures containing a hetero metalmetal bond in the metalloporphyrin series are: $[(oep)-SnFe(CO)_4]$ (Barbe, Guilard, Lecomte & Gerardin, 1984), Sn=Fe = 2.491 (1) Å; $[(tetraphenylporphinato)-SnMn(CO)_4HgMn(CO)_5]]$.0.5CH₂Cl₂ (Onaka *et al.*, 1985), Sn-Mn = 2.554 (3) Å; $[(oep)InMn(CO)_5]$ (Guilard, Mitaine, Moïse, Lecomte, Boukhris, Swistak, Tabard, Lacombe, Cornillon & Kadish, 1987), In-Mn = 2.705 (1) Å, [(oep)RhIn(oep)] (Jones, Carrol & Wayland, 1986), Rh-In = 2.584 (2) Å; [(oep)TiMn-

Fig. 1. ORTEP view of [(oep)InMo(CO)₃Cp].

 $(CO)_5$] (Guilard *et al.*, 1988), Ti-Mn = 2.6994 (9) Å; [(oep)TiMo(CO)₃Cp] (Richard, Zrineh, Guilard, Habbou & Lecomte, 1989), T1-Mo = 2.829 (1) Å. Compared to [(oep)Sn=Fe(CO)₄] (Barbe, Guilard, Lecomte & Gerardin, 1984) and to the above values the In-Mo bond [2.890 (1) Å] corresponds to a single covalent bond.

References

- AUBRY, A. & LECOMTE, C. (1983). Report UA 809. Laboratoire de Minéralogie-Cristallographie, Univ. de Nancy I, France.
- BARBE, J. M., GUILARD, R., LECOMTE, C. & GERARDIN, R. (1984). Polyhedron, 3, 889–892.
- BROTHERS, P. J. & COLLMAN, J. P. (1986). Acc. Chem. Res. 19, 209-215.
- GUILARD, R., LECOMTE, C. & KADISH, K. M. (1987). Structure and Bonding, Vol. 64, edited by J. W. BUCHLER, pp. 205–268. Berlin: Springer-Verlag.
- GUILARD, R., MITAINE, P., MOÏSE, C., LECOMTE, C., BOUKHRIS, A., SWISTAK, C., TABARD, A., LACOMBE, D., CORNILLON, J. L. & KADISH, K. M. (1987). Inorg. Chem. 26, 2467–2476.
- GUILARD, R., ZRINEH, A., FERHAT, M., TABARD, A., MITAINE, P., SWISTAK, C., RICHARD, P., LECOMTE, C. & KADISH, K. M. (1988). Inorg. Chem. 27, 695-705.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99–101. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- JONES, N. L., CARROL, P. J. & WAYLAND, B. B. (1986). Organometallics, 5, 33-37.
- ONAKA, S., KONDO, Y., YAMASHITA, M., TATEMATSU, Y., KATO, Y., GOTO, M. & ITO, T. (1985). Inorg. Chem. 24, 1070–1078.
- RICHARD, P., ZRINEH, A., GUILARD, R., HABBOU, A. & LECOMTE, C. (1989). Acta Cryst. C45, 1224–1226.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Göttingen, Federal Republic of Germany.

^{*} Lists of observed and calculated structure factors, anisotropic thermal parameters, positional and isotropic temperature factors for H atoms and least-squares planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51796 (101 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.